Khavinson Problem for Hyperbolic Harmonic Mappings in Hardy Space
نویسندگان
چکیده
\begin{abstract} In this paper, we partly solve the generalized Khavinson conjecture in setting of hyperbolic harmonic mappings Hardy space. Assume that $u=\mathcal{P}_{\Omega}[\phi]$ and $\phi\in L^{p}(\partial\Omega, \mathbb{R})$, where $p\in[1,\infty]$, $\mathcal{P}_{\Omega}[\phi]$ denotes Poisson integral $\phi$ with respect to Laplacian operator $\Delta_{h}$ $\Omega$, $\Omega$ unit ball $\mathbb{B}^{n}$ or half-space $\mathbb{H}^{n}$. For any $x\in \Omega$ $l\in \mathbb{S}^{n-1}$, let $\mathbf{C}_{\Omega,q}(x)$ $\mathbf{C}_{\Omega,q}(x;l)$ denote optimal numbers for gradient estimate $$ |\nabla u(x)|\leq \mathbf{C}_{\Omega,q}(x)\|\phi\|_{ \mathbb{R})} direction $l$ $$|\langle\nabla u(x),l\rangle|\leq \mathbf{C}_{\Omega,q}(x;l)\|\phi\|_{ \mathbb{R})}, respectively. Here $q$ is conjugate $p$. If $q=\infty$ $q\in[\frac{2K_{0}-1}{n-1}+1,\frac{2K_{0}}{n-1}+1]\cap [1,\infty)$ $K_{0}\in\mathbb{N}=\{0,1,2,\ldots\}$, then $\mathbf{C}_{\mathbb{B}^{n},q}(x)=\mathbf{C}_{\mathbb{B}^{n},q}(x;\pm\frac{x}{|x|})$ $x\in\mathbb{B}^{n}\backslash\{0\}$, $\mathbf{C}_{\mathbb{H}^{n},q}(x)=\mathbf{C}_{\mathbb{H}^{n},q}(x;\pm e_{n})$ \mathbb{H}^{n}$, $e_{n}=(0,\ldots,0,1)\in\mathbb{S}^{n-1}$. However, if $q\in(1,\frac{n}{n-1})$, $\mathbf{C}_{\mathbb{B}^{n},q}(x)=\mathbf{C}_{\mathbb{B}^{n},q}(x;t_{x})$ $\mathbf{C}_{\mathbb{H}^{n},q}(x)=\mathbf{C}_{\mathbb{H}^{n},q}(x;t_{e_{n}})$ \mathbb{H}^{n}$. $t_{w}$ vector $\mathbb{R}^{n}$ such $\langle t_{w},w\rangle=0$ $w\in \mathbb{R}^{n}\setminus\{0\}$. \end{abstract}
منابع مشابه
Viscosity approximation methods for W-mappings in Hilbert space
We suggest a explicit viscosity iterative algorithm for nding a common elementof the set of common xed points for W-mappings which solves somevariational inequality. Also, we prove a strong convergence theorem with somecontrol conditions. Finally, we apply our results to solve the equilibrium problems.Finally, examples and numerical results are also given.
متن کاملImage fusion based on topographic mappings using the hyperbolic space
Received: 20 September 2004 Revised: 11 February 2005 Accepted: 16 February 2005 Abstract The analysis of multivariate image data is a field of research that is becoming increasingly important in a broad range of applications from remote sensing to medical imaging. While traditional scientific visualization techniques are often not suitable for the analysis of this kind of data, methods of imag...
متن کاملInfinitely Many Solutions for Hardy–hénon Type Elliptic System in Hyperbolic Space
see for instance [29]. Notice that the exponent p or q could be larger than N+2 N−2 . Hence the usual Sobolev space H 0 (Ω)×H1 0 (Ω) is not suitable to handle the problem. To study the problem (1.2) under the condition (1.3), a key observation was done by Hulshof and Van de Vorst [16], De Figueiredo and Felmer [9]. In order to solve this problem, the main idea is to destroy the symmetry between...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2022
ISSN: ['1572-929X', '0926-2601']
DOI: https://doi.org/10.1007/s11118-022-10004-1